Sleep Spindles Detection: a Mixed Method using STFT and WMSD

نویسندگان

  • João Costa
  • Manuel Ortigueira
  • Arnaldo Batista
  • Teresa Paiva
چکیده

Sleep spindles are a hallmark of stage 2 sleep and are promising indicators of neurodegenerative disorders such as schizophrenia and dementia. In this paper two sleep spindle detectors are presented. The first is based on the Short Time Fourier Transform (STFT), the second is a novel algorithm and is based in the wave morphology of sleep spindles. Finally, a combination of the previous is proposed in a novel mixed algorithm. Performance results are presented applying the algorithms to a signal scored by two human experts. It is showed in that the combination of two algorithms, which separately provided seasonable results (around 91% sensibility), improves when they are mixed using the approach proposed (93%sensibility).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Automatic Sleep Spindle Detector based on WT, STFT and WMSD

Sleep spindles are the most interesting hallmark of stage 2 sleep EEG. Their accurate identification in a polysomnographic signal is essential for sleep professionals to help them mark Stage 2 sleep. Sleep Spindles are also promising objective indicators for neurodegenerative disorders. Visual spindle scoring however is a tedious workload. In this paper three different approaches are used for t...

متن کامل

K-Complex Detection Based on Synchrosqueezing Transform

K-complex is an underlying pattern in the sleep EEG. Due to the role of sleep studies inneurophysiologic and cognitive disorders diagnosis, reliable methods for analysis and detection of this patternare of great importance. In our previous work, Synchrosqueezing Transform (SST) was proposed for analysisof this pattern. SST is an EMD-like tool, which benefits from wavelet transform and reallocat...

متن کامل

Detection of K-complexes and sleep spindles (DETOKS) using sparse optimization.

BACKGROUND This paper addresses the problem of detecting sleep spindles and K-complexes in human sleep EEG. Sleep spindles and K-complexes aid in classifying stage 2 NREM human sleep. NEW METHOD We propose a non-linear model for the EEG, consisting of a transient, low-frequency, and an oscillatory component. The transient component captures the non-oscillatory transients in the EEG. The oscil...

متن کامل

Sleep spindle detection based on non-experts: A validation study

Accurate and efficient detection of sleep spindles is a methodological challenge. The present study describes a method of using non-experts for manual detection of sleep spindles. We recruited five experts and 168 non-experts to manually identify spindles in stage N2 and stage N3 sleep data using a MATLAB interface. Scorers classified each spindle into definite and indefinite spindle (with weig...

متن کامل

A comparison of two sleep spindle detection methods based on all night averages: individually adjusted vs. fixed frequencies

Sleep spindles are frequently studied for their relationship with state and trait cognitive variables, and they are thought to play an important role in sleep-related memory consolidation. Due to their frequent occurrence in NREM sleep, the detection of sleep spindles is only feasible using automatic algorithms, of which a large number is available. We compared subject averages of the spindle p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012